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A B S T R A C T

Tethered particle motion experiments are versatile single-molecule techniques enabling one to address in vitro
the molecular properties of DNA and its interactions with various partners involved in genetic regulations. These
techniques provide raw data such as the tracked particle amplitude of movement, from which relevant in-
formation about DNA conformations or states must be recovered. Solving this inverse problem appeals to specific
theoretical tools that have been designed in the two last decades, together with the data pre-processing pro-
cedures that ought to be implemented to avoid biases inherent to these experimental techniques. These statistical
tools and models are reviewed in this paper.

1. Introduction

The main advantage of single-molecule techniques over traditional
bulk experiments is the possibility to disentangle sample heterogeneity
and to gain insight into subpopulation properties. The tethered particle
motion (TPM1) single-molecule technique has been developed in the
early 1990’s [1,2] to detect and quantify conformational changes of
biopolymers induced by their interaction with other molecular partners
or changes in their environment [3–5]. It consists in tracking the
Brownian motion of a nano-particle (tens to hundreds of nanometers in
diameter) attached to a glass surface by a biopolymer such as a DNA
molecule and measuring the particle amplitude of movement and its
changes when experimental conditions are modified. TPM experiments
do not require expensive experimental set-ups, in particular because the
particle is tracked by an optical microscope. This explains why numbers
of experimental groups adopt this technique to investigate the effects of
agents (e.g., enzymes, drugs, ions, or more generally pH, ionic strength
or temperature) acting on the characteristics of the tethering polymer,
such as its persistence length, its conformation, or its denaturation
properties. A variant of TPM is Tethered fluorophore motion (TFM)
[6,7]. It uses the same principles as TPM but employs a fluorophore
(and sometimes two [8]) in place of the particle. TFM can thus be
combined with fluorescence techniques such as Förster resonance en-
ergy transfer. However, TFM is limited in observation time because of

fluorophore photobleaching [7].
Optical and magnetic tweezers [9,10] are another class of powerful

tools to investigate the elastic properties of DNA molecules. Optical
tweezers [11,12] rely on a focused laser beam to provide an attractive
force on the order of the pico-Newton (pN) to manipulate micrometric
particles. Magnetic tweezers [13,14] consist of two permanent magnets
producing a horizontal magnetic field at the location of a magnetic
particle. In both cases, as in TPM, the particle is attached to a biopo-
lymer tether, itself grafted to the glass surface. Magnetic torque twee-
zers (MTT) are an extension of conventional magnetic tweezers where a
cylindrical magnet creates a vertical magnetic field and permits to
apply both forces and torques. At zero turn the particle is at its rota-
tional equilibrium position and the tethered DNA is torsionally relaxed.
After applying turns the DNA molecule is twisted, which gives access to
the torsional elastic properties of DNA and also its non-linear response
when twist is converted into writhe through the creation of superhelical
DNA regions [15].

As compared to optical or magnetic tweezers, no external force is
applied to the particle in TPM [4], if not the weak repulsion exerted by
the glass surface on the polymer and the bead, in the tens of fN range
[16]. Studying the biopolymer in quasi-force-free conditions enables
one to tackle its equilibrium properties, as well as reaction rates be-
tween two (or more) states such a assembly/disassembly rates of DNA
constructs or binding/unbinding rates of enzymes on a tensionless DNA
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[17]. These different techniques are thus complementary.
Recent improvements of TPM rely on multiplexing, hundreds of

DNA-bead complexes being positioned in a controlled manner by soft
nano-lithography and monitored in parallel. The ensuing technique is
called high-throughput TPM (htTPM) [18]. By drastically reducing
acquisition time as compared to anterior setups where the molecules
where observed one by one, multiplexing gives access to highly refined
statistics allowing one to distinguish between closely related con-
formations [19–23]. Dealing with these refined statistics justifies the
development of improved statistical tools and modeling to interpret
them, as detailed in this Review.

From a biological perspective, single-molecule techniques have en-
abled many research groups to decipher key mechanisms at play in
cells, starting with the pioneering paper by Schafer and coworkers in
1991, where the progressive shortening of the tether gave access to the
processivity of immobilized RNA polymerases [1]. The estimated value,
even though rather rough at this time, was of a dozen of bps/s (see also
Ref. [2]), in satisfying agreement with measurements in solution. Later,
using a similar strategy, the RuvAB-directed branch migration of in-
dividual Holliday junctions [24] was measured, also on the order of 10
to 20 bps/s, as well as its dependence on the construct sequence. Sev-
eral other examples of biological applications can be found in previous
review articles [5,25] or will be discussed in the present Review. The
interpretation of these experiments not only depends on accurate
measurements but also on adequate and reliable physical models able
to account for sometimes very weak and subtle effects. It allows one to
identify the relative roles of the intrinsic parameters of the system. The
bead size, the tether length, the surface state of the substrate and the
solvent are all likely to play pivotal roles in this context, as well as the
acquisition rate of the camera used to track the particle. Their different
contributions must be precisely quantified, as discussed below. This
Review article can be seen as a companion article to the one by Jean-
François Allemand, Catherine Tardin and Laurence Salomé in the same
issue [23]. It gives additional details about physical, mathematical and
algorithmic issues related to TPM and the ways to tackle them. Even
though they are not the main focus of this Review, optical and magnetic
tweezers or AFM often come as complementary tools to study single-
DNA molecules under force and/or torque. They also need theoretical
and algorithmic tools for the interpretation and modeling of experi-
ments. The last decade has witnessed their rapid development, and the
reader can for example refer to Refs. [26–33] for further detail. When
the connection with TPM experiments is meaningful, we shall discuss
some works dealing with force and torque experiments in the present
Review.

2. Modeling single DNA-molecule experiments and their dynamics

Several coarse-grained models have been developed in the past
decades to model a single DNA molecule. These models are either nu-
merical and/or analytical, the simplest one being the Gaussian chain,
for which the end-to-end distance is R bLR ( )ee

2 1/2, a valid ex-
pression2 as soon as the DNA contour length L is much larger than the
Kuhn length =b 2 p. The DNA persistence length is = k T/( )p B where

is the bending modulus and is approximately 50 nm for double-
stranded DNA in physiological conditions [19]. The associated nu-
merical model is the bead-spring model which is easy to implement. It
consists in modeling the DNA by N beads, whose diameter is equal to
the Kuhn length, connected by springs, in Brownian dynamics or Monte
Carlo simulations. Although this model is central to understand
polymer properties at large scales [34], it is not adapted to single-DNA
molecule experiments, which are interested in DNA lengths from few

hundreds to few thousand base-pairs, on the order of the Kuhn length.
Moreover the bead has a radius much larger than the dsDNA radius 1
nm. It should be noted that at large scales, DNA is in good solvent
conditions, i.e. the DNA is swollen compared to the Gaussian chain. The
end-to-end distance is now R v b L( / )ee

1/5 3/5 (for L b) where the
excluded volume v depends on the salt concentration.

The most adapted model is the worm-like (or semi-flexible) chain
model because it reveals the mechanical and statistical properties that
are probed in single-molecule experiments, without describing the DNA
structure in detail. This model considers the chain as a homogeneous
stiff rod, the bending energy of which leads to a short-ranged tangent-
tangent correlation, =s et t( )· (0) s/ p where s is the curvilinear index
along the chain and st( ) the normalised tangent vector. The end-to-end
distance is then given by the Kratky-Porod result [35]

+R L e2 1p
p

L
ee
2 2 / p

(1)

which yields the two good limits of the rigid rod, R Lee
2 2, when L p

and the Gaussian chain, R L2 pee
2 , when L p. The associated dis-

cretised numerical model is a bead-spring model with a large spring
stiffness to enforce the chain connectivity and an additional bending
energy = =E (1 cos )b i

N
i1

1 where = k Tp B is the bending mod-
ulus and i the angle between two consecutive links. In this discrete
worm-like chain model, the successive beads are free to rotate with
respect to each other (which is equivalent to set the torsional modulus C
to 0). Note that in the torque experiments, torsion must also be taken
into account: the twist angle i is defined between two consecutive
base-pairs (or by defining a material frame for each bead) and the as-
sociated elastic energy of a torsional spring writes, in the limit of large
C (valid for DNA), = =E ( )t

C
i
N

i2 1
1

0
2, where = 0.620 rad is the

equilibrium DNA twist in physiological conditions.
Depending on the experimental setup, possible boundary conditions

and/or interactions between the DNA and external objects might be
considered. In TPM, one DNA end is tethered to a substrate, which is
usually modeled as a freely rotative joint. The other DNA end is at-
tached to a spherical particle. The DNA-particle link is also treated as
freely rotative joint, except in torsion experiments. The glass coverslip
is treated as a hard wall boundary condition limiting the motion of the
DNA and the particle to the upper half plane. Although easy to imple-
ment numerically, the hard wall condition and the large particle size
modify the equilibrium statistics of the DNA in TPM experiments. The
amplitude of movement of the particle is defined as = r2 where r
is the two-dimensional particle position parallel to the coverslip. Note
that without loss of generality, we have set here =sr ( ) 0. The am-
plitude of movement can be estimated analytically only in the limit of
flexible DNA (L p) [16,17,36], and some interpolation formulas
have been proposed in the semi-flexible regime [37].

Concerning the dynamical properties of the DNA, the relaxation
time (see next Section) is also modified by the experimental setup. In
particular, the no-slip boundary condition enforced by the presence of
the coverslip slows down the DNA–particle dynamics. Hence in the
numerical simulations, the hydrodynamics interactions induced by the
wall are encoded using Faxén’s law prescribing how the diffusion
coefficient of both the DNA molecule and the particle is reduced close
to the wall, in order to satisfy the no-slip condition for the solvent ve-
locity field at the wall [17].

3. Dealing with statistical and systematic errors

We first introduce the different experimental times of interest, here
and in the sequel. The camera acquisition period is denoted by Tac. It
will play an important role when dealing with the blurring effect below.
It typically ranges from few ms for fast acquisition devices [38] to few
tens of ms at video rate. The camera exposure time is T Tex ac, whilst in
general =T Tex ac. It must be shorter than the characteristic physical

2 The average … is an ensemble average over realizations. When dealing
with experiments, it will become an average over time, assuming the validity of
the ergodic theorem.
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times of interest in the experiment in order to have access to all relevant
events. As for the trajectory duration, it must be long as possible in
order to reduce statistical uncertainties. Since the tethered particle is
not subject to photobleaching, the trajectory can be recorded for several
minutes in TPM, which is a great advantage in terms signal-to-noise
ratio as compared to single-fluorophore techniques.

One of the objectives here is to measure the useful correlation (or
relaxation) time of the 2D tethered-particle position r . It sets the
typical time needed for the particle to explore its configuration space. It
is defined through the auto-correlation function

= +C t s t s sr r r( ) ( )· ( ) ( ) 2 (2)

where the average … is taken along the trajectory. For sake of sim-
plicity, we assume that the time correlation function has the form

=C t C e( ) (0) t/ m. This expression is exact only in the case of a quad-
ratic confining potential. In the case of a more complicated confining
potential induced by the polymer tether, it is only an approximation
because the auto-correlation function is a sum of decreasing ex-
ponentials and m is then associated with the slowest diffusion mode,
which dominates at long times [35]. In practice, we shall see below that
the measured correlation time m is slightly larger than the real one
because of blurring effects that we aim at quantifying in the present
section.

3.1. Cleaning data from spurious points

A first data preprocessing step is essential to minimize the con-
tributions of unwanted biases and experimental variability. First of all,
it is essential to deal with the measurement heterogeneity induced by
undesirable artefacts due, e.g., to ill-assembled objects. For all single
molecule approaches involving anchored DNA molecules, the substrate
surface state is crucial [4]. This becomes even more critical when
studying dynamically acting proteins or molecules binding on the DNA,
and especially for AFM [39] or tweezer [40] manipulations. Such ap-
proaches require that the DNA molecules binds to substrate surface
without modifying physiological functions and properties, and that only
desired anchoring is realized, without any sort of spurious secondary
attachments [17].

When advanced experimental protocols are not sufficient to prevent
those artefacts, statistical tools offer an alternative way to do so during
the data preprocessing step. In TPM experiments, malformed DNA-
particle complexes, e.g. with two grafted DNA molecules instead of an
expected unique one would interfere with main population of interest
and hamper the authentic experimental noise. Applying a selecting
filter based on the asymmetry factor of the 2D trajectories allows one to
select only well-defined tethered DNA/particle complexes as mentioned
in the article by Allemand et al. in this issue [23]. An asymmetry factor
(or aspect ratio) larger than 1.35 is assumed to be associated with two
DNA tethers cross-linked to the same tracked particle [19].

However, this criterion may appear to be insufficient to deal with
spurious non-specific binding of some particles to the coverslip. One
must get rid of trajectories laying in the far tails of the amplitude of
movement distribution. Hence, if a single population is expected, for
example when extracting a bending angle or the persistence length (see
Section 4.3 below), trajectories with amplitude of movement outside
the interval (mean ± 2.5 standard deviations) were discarded in Refs
[19,20,22].

Extracting the particle displacement–time properties provide an
alternative and complementary objective criterion for classifying the
trajectories into the main population and outliers. The correlation time
for each 2D TPM-trajectories, , is determined as described above. The
resulting data for the global DNA population is expected to behave as a
single population for a given DNA state. Based on that, and as above for
amplitude of movements, a trajectory is declared as an outlier if its
lays in the far tails of this distribution and is then sorted out. In practice,
sorting out points deviating by more than 1 or 2 standard deviations

from the average value is also a reasonable criterion [20]. Based on the
same principle for filtering experimental data, Schickinger et al. [8]
exploit the average dwell-time. It is determined in each specific state,
unbound and bound DNA, for each particle. Comparing bound vs. un-
bound dwell times reveals multiple data point clusters and provided a
criterion of selection. Considerable discrepancy with the main popula-
tions leads to the discrimination of outliers.

More generally, all single-molecule approaches come with their own
specific protocol-induced defects, which need to be taken into account
in order to clean data from outliers before confronting them to statis-
tical analysis and theoretical modeling. This is even more true when
using high-throughput approaches that provide high sampling levels
and allow to define precisely the main conformation populations.

3.2. Subtracting instrumental drift

Once data have been cleaned from outliers, the first systematic error
to correct comes from the instrumental drift, due, inter alia, to thermal
expansion of the observation setup [17]. Along a given trajectory, the
DNA approximate anchoring point at each time t0 is determined by
averaging the particle position over an interval of duration Tav (typically
1 or 2 s, sometimes even more [41]) centered at t0, and then subtracted
from r . If Tav is chosen to be much larger than the measured relaxation
time m, this anchoring point is determined with a good accuracy. This
sets r 0, as desired.

Note that subtraction of drift induces non-trivial systematic anti-
correlations at short times t Tav. Indeed, let us assume that the
measured time correlation function in absence of drift also has the form

=C t C e( ) (0) t
m m

/ m. Then subtraction of drift modifies it to

= +C t
C T

e
T

( )
(0)

1 2 2tm

m

m

av

/ m

av
m

(3)

at first order in T2 / 1m av [17]. This will have to be taken into account
when measuring m below.

3.3. Correcting blurring effect

Another important source of systematic error in TPM comes from
the finiteness of the camera exposure time Tex. An image in fact re-
presents the optical signal averaged over a time interval of duration Tex.
In Refs. [42,37,43,17], the ensuing time-averaging (or blurring) effect
in single-particle tracking experiments was investigated. It occurs
whenever the trajectory of the tracked particle is confined in a bounded
domain, not only in TPM but also when tracking plasma membrane
constituants, for instance. Indeed, in the extreme case where the frame
exposure time would be much larger than the system auto-correlation
time, itself inversely proportional to the domain area (see below), the
measured particle position during this period would remain very close
to the anchoring point, giving the erroneous impression that the am-
plitude of motion is much smaller than its actual value. However, we
shall see that when it is not too strong, this effect can efficiently be
corrected.

By using Eq. (3), the measured correlation function C t( )m is first
fitted to obtain the measured correlation time m, the only free para-
meter in this expression (the value of Tav has been chosen from the
beginning). It can be proven that the real correlation time is given by

T
3m
ex

(4)

which remains a correct approximation while T2 /3m ex [42,17]. From
this value, the diffusion domain size can now be corrected. It is char-
acterized by the trajectory standard deviation r2 , also called
“amplitude of movement”, measured on a sufficiently long interval in
order to accurately sample configurations [38] (see Section 5.1). If m is
its measured value, then the real one is recovered in its turn from
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( )T T
e2 2 1 .

T
m

ex ex

2 1/2
ex

(5)

For example, if =T 2ex then 0.75m [42]. In the case where Tex ,
we naturally get m. Note that the particle diffusion coefficient D
depends on both and , through =D Const. /2 , where Const. de-
pends on the domain geometry [44]. The measured value Dm can be
substantially different from the actual one D, e.g., D D0.34m if

=T 2ex . It is necessary to correct both and thanks to the above
formulae to get the correct value of D.

Incorrectly dealing with this blurring phenomenon can have dra-
matic effects when varying the experimental temperature T. Indeed, the
water viscosity T( )w decreases rapidly with increasing T. This leads to
a 4-fold fall of D T T( )/1

w when T grows from 15 to 70°C [22].
Even though larger than Tex at low T, likely becomes comparable to or
smaller than at high T, then requiring correction of the blurring
phenomenon. This issue has previously led to erroneous conclusions
about denaturation profiles of DNA as observed by TPM [45,22] (see
also Section 4.3.4 below).

3.4. Estimating error bars

The last step is to determine average values and associated error
bars. The most straightforward way is to estimate the single average of
an observable O over the distribution of the set of N data point as its
mean µ OO . Statistical fluctuations are estimated through the var-
iance 2 2 2O OO , and the standard deviation O . Assuming sta-
tistical independence of samples, the error bar on µO is then N/O

(68% confidence interval) or twice this value (95% confidence).
More advanced methods can be used as the jackknife, used in Refs.

[46–48], or the bootstrap, used in Refs. [49,19–22], to estimate the error
bar. Both are resampling methods. In the jackknife, one considers N
resampled sets of data, each containing all but one of the original data
points. The bootstrap uses M sets of data, each containing N data points
obtained by random sampling, performed by Monte Carlo, of the ori-
ginal set of N points. During the Monte Carlo sampling with replace-
ment, the probability that a data point is selected is N1/ . The number of
bootstrap samplings, M, should be chosen to be large enough so that the
average bootstrap sampling is reproducible with sufficient accuracy.
The jackknife approach leads to identical results each time it is run on
the same set of data, which is not true for bootstrap.

4. Solving the inverse problem

“Solving the inverse problem” can be generically stated as calcu-
lating, from a set of experimental measurements, the causes that pro-
duced them. The aim is to gain insight into the physical properties of a
system by indirect measurements or conversely to set up a predictive
model that can reproduce observations. In the present context, coupling
theory and experiments offers appropriate tools to probe the intrinsic
physical properties of the DNA macromolecule: for instance, DNA
persistence length or its local defects, from the apparent end-to-end
distance of the polymer as accessible from TPM.

4.1. Analytical approaches and their limits

The exact equilibrium distribution, p r( ), of the amplitude of
movement of the TPM particle can only be computed in the rigid and
flexible limits [17,16]. Using the mirror reflection argument, the
probability distribution in the Gaussian (flexible) regime and in the
limit where the particle radius is large, R L p , is given by [17]:

+
+ +p

L R L
R R Rr

r
r

r r3 exp 3
4

( 2 2 ) .
p p

G 2 2
2 2 2 2

(6)

The intermediate semi-flexible regime, L p, of interest in TPM ex-
periments, is well described by the worm-like chain model. For in-
stance, in the experiments described in Ref. [17], DNA lengths vary
between 400 and 2080 bp, which corresponds to < <L2 / 14p . This
model can be tackled analytically [50,51] but the boundary conditions
must be handled with care and the final step should be solved nu-
merically, which does not provide any analytical formula for the
probability distribution with fitting parameters. Moreover, it should be
kept in mind that real chains are self-avoiding and that the presence of
the labelling particle renders the problem even more intricate. For in-
stance, the effect of the excluded volume of the particle is to widen and
shift to large r the Gaussian distributions. It then becomes analytically
intractable for finite chains, but it can be tackled numerically by Monte
Carlo or Brownian dynamics simulations (see Section 4.2).

The over-damped dynamics of the DNA in the flexible regime is
controlled by the Rouse time = NR D/G

2
0 where RG is the radius of

gyration and =D k T/(6 )B p0 is the diffusion coefficient of a monomer
sphere of radius p in a liquid of viscosity [52,17]. However, when the
TPM particle is grafted at one end, the relaxation time and the diffusion
coefficient measured by tracking the particle dynamics are features of
the dynamics of the whole DNA–particle complex. Using the Langevin
equation, it is shown that the diffusion coefficient Dc is given by:

=
+

D
D D

D Dc
part DNA

part DNA (7)

where =D k T R/(6 )Bpart . Thus the particle does not slow down the
complex provided that D Dpart DNA. Knowing Dpart, the value of DDNA
is inferred from the measurement of Dc. Note however that these ana-
lytical considerations do not allow us to compare with TPM experi-
ments due to (i) the fact that the chain is in the semiflexible regime; and
(ii) the neglect of hydrodynamics interactions in this approach.

4.2. Numerical simulations

Several types of numerical simulations have been developed to
circumvent the above limitations. To test both the dynamics and the
equilibrium properties in the TPM setup geometry, the adequate nu-
merical methods are Brownian dynamics simulations and kinetic Monte
Carlo simulations.

In Brownian dynamics simulations, the evolution of each sphere
position tr ( )i is governed by an iterative Langevin equation (discrete
time step t and discrete time variable =n t t/ )

+ = +n n D U n D nr r( 1) ( ) ( ) 2 ( ),i i ir0 0i (8)

where the rescaled random displacement has variance unity
=n m( )· ( ) 3i j ij nm. The rescaled bare diffusion coefficient

=D D t a/0 0
2 is the diffusion constant in an unbounded space in

units of the particle radius a and time step t . For sufficient
numerical accuracy the usual choice is =D 100

3–10 5. The di-
mensionless potential =U U k T/( )B is the sum of stretching and
bending potentials described in Section 2. The excluded volume inter-
action is modeled by a repulsive, truncated Lennard-Jones potential

= +<U b br r r r( / ) 2( / ) 1LJ i j i j i j
12 6 valid for separation

<r r 2i j and = +b R 1 for and =b 2 otherwise. Since the polymer
motion is limited to the upper half-plane >z 0, we
use the reflection boundary condition: if a sphere intersects the
substrate, its height zi is replaced by its mirror image =z a z2i i

refl

( =z R a z2( )N N
refl for the particle).
In Monte Carlo simulations, at each step (MCStep) t , a bead is

chosen uniformly at random among the +N 1 possible ones (monomer
spheres and labelling particle). Then a random move r is attempted for
this bead, uniformly in a ball of center 0 and radius Rb. One shows that
in this case = Rr 3 /5b

2 2 . This quantity must be equal to D t6 0 , where
D0 is the diffusion coefficient of the spherical bead, depending on its
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diameter, which sets =R D t10b 0 . Interactions between adjacent
beads are treated via the potential U, whereas interactions between
non-adjacent beads are of hard core nature, like surface-bead interac-
tions: whenever a move would lead to the penetration of a bead into an
other one or the surface, it is rejected. The physical time is incremented
of t following each Monte Carlo Sweep (MCS, equal to a sequence of

+N 1 MCSteps). A simulation snapshot is shown in Fig. 1 at equili-
brium. Note that the choice of excluded volume interaction in Monte
Carlo simulations saves computational time as compared to the calcu-
lation of truncated Lennard-Jones potentials used in Brownian Dy-
namics.

The advantage of these simulations is to give access to dynamical
properties. From this viewpoint, Brownian Dynamics and kinetic
Monter Carlo simulations are equivalent in the small t limit. As an
example, experimental and numerical values of the relaxation times
(extracted from C t( ) defined in Eq. (2)) are shown in Fig. 2[17]. Ex-
perimental and numerical values are found in good agreement, with

ratios of experimental to numerical values varying from 0.5 to 2 (shown
in the inset).

If one is only interested in equilibrium properties of the conforma-
tion of the DNA–particle complex, i.e. the probability distribution
p r( ) or its standard deviation for various apparent DNA contour
lengths L, a faster numerical method is to compute DNA–particle con-
formations by exact Monte Carlo sampling. This method has been de-
veloped by Segall and collaborators [16,37] and used in subsequent
works [7,19]. It consists in generating labeled DNA as a random walk of
N steps with a bending energy Eb (defined in Section 2) by step. The
angles i between successive links are randomly chosen through a
probability distribution in agreement with the Boltzmann weight at
equilibrium E k Texp[ /( )]b B . The starting point is the bead tethered
to the substrate, and at each step, self-intersecting trajectories (resp.
trajectories intersecting the substrate) are discarded to take into ac-
count intra-chain excluded volume interactions (resp. repulsive inter-
actions with the substrate). Then statistical averages are computed. This
numerical method made possible comparisons with approximate ana-
lytical expressions, and the finding of very accurate interpolation
functions for L( )[37]. Moreover, it has been used in Ref. [19] to obtain
a graphical reference for in function of the dsDNA persistence length

p and therefore to study quantitatively the variation of p with the salt
concentration in the solution (see Section 4.3.3).

4.3. Examples

Weak magnitude changes in DNA conformation can be difficult to
detect by TPM. Coupling multiplexed single-molecule experiments,
statistical physics and mesoscopic modeling allows one to detect and
investigate narrow changes in the amplitude of movement t( ). Local
modifications along the DNA molecule, such as kink, protein binding,
loop formation, or more global effects due to a change in the sur-
rounding environment, such as viscosity, pH, ionic strength or tem-
perature, will impact the physical properties of the DNA molecule.
Changes in the distribution of DNA molecule conformations induce a
transition in the apparent contour length, a variable directly accessible
through single-molecules techniques. We now review representative
examples.

4.3.1. Intrinsic curvature angle in TPM
Local bending of the DNA double helix axis can be induced by either

the binding of proteins [53,4,40] (Fig. 1, right) or by specific sub-se-
quences. Specific sub-sequences, such as short A-tracts composed of a
succession of adenines on the same strand, can locally change the bio-
molecule mechanical properties, which is measured through small local
bends. Different single-molecule techniques can give access to quanti-
tative measurement of local bending, including AFM, fluorescence
spectroscopy, tweezers and TPM [54,40].

Joint theory and simulation establish the adapted formalism to ex-
plore the effect of a local bend in TPM experiments. Using the worm-
like chain model to describe a local bending deformation, modeled as a
kink of angle 0 located at distance from one end, the end-to-end
distance Ree is given by a modified version of Eq. (1)[19], the so-called
kinked worm-like chain model:

= + + + +R L e e e e e2 2 cos( )(1 )p
p

p L p p L p L pee
2 2 / ( )/ / ( )/ /

(9)

From a numerical perspective, simulated TPM is adapted to model lo-
cally bent DNA by incorporating the preferred angle between three
successive beads into the bead chain. Only the inserted sub-sequence is
expected to induce an intrinsic curvature, the remainder of the DNA
sequence is assumed to be a random one, without any intrinsic curva-
ture. For 575-bp-long DNA molecule, an angle of = would induce a
decrease of the apparent DNA contour length of 30% (absolute

Fig. 1. A TPM numerical model: the DNA molecule is modeled as a polymer
chain made of N connected beads (various colours), anchored to the coverglass
(in blue) at one extremity and to the tracked particle (in red) at the other end.
The 2D position r of the particle center is represented by the polar coordinates

and in the xOy( ) plane. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 2. Experimental ( exp, solid symbols) and numerical ( sim, using z-depen-
dent diffusion coefficients, open symbols) relaxation times for different DNA
lengths, L, and particle radius, R, in linear-log coordinates. Inset: Ratio /exp sim

versus L R/ with the same symbols as above, in log-log coordinates. The dashed
line shows the best linear regression, with slope 0.355. Taken from Ref. [17].
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reduction of 35 nm) for a bend located in the middle of the DNA
compared to DNA without any curvature. In contrast, the variation is of

15% (absolute reduction of 15 nm) for a the same bending site now
placed at 1/3 from the DNA free end.

HtTPM experiments were performed on a set of designed DNA-
molecules containing increasing number of A-tracts, from 0 to 7 [20].
Then, the apparent end-to-end distance of the entire DNA molecule was
compared to the predictions of the kinked worm-like chain model to
extract the bending angle. The discrepancy between experiments and
the analytical expression pointed out the fact that the statistical model
did not properly incorporate some biological heterogeneity, notably the
non-zero intrinsic curvature spread over the whole molecule. Taking it
into account leads to a better extrapolation of data. This highlights a
fact often neglected in theoretical approaches: the zero-temperature
limit of real DNA is not a straight, regular helix, but rather a slowly
meandering one related to the sequence.

The analytical models can also consider separately the cases of a
bend with a fixed angle and of a local flexible hinge with no sponta-
neous curvature. Those two distinct causes similarly affect the apparent
end-to-end distance measured by TPM and are not easy to disentangle.
To account for these two mechanical modifications simultaneously,
more precise theoretical developments are needed.

4.3.2. DNA looping in TPM
DNA looping is a common phenomenon, useful to gene regulation in

both prokaryotes and eukaryotes. Probing protein binding and the in-
duced loop formation ([25] and references therein) helps to resolve
more precisely the geometry of the DNA-protein complexes involved in
many biological processes. TPM measurements can be used to unravel
the structure of the loop. Moreover, by knowing the length of the loop
and the positions of protein-binding sites, the change in apparent end-
to-end distance measured by TPM can be used to infer geometrical or
conformational alteration of the looped protein-DNA structure. Using
statistical mechanics models based upon elastic interactions in small
DNA molecules, Biton et al. [55] and Johnson et al. [41] probed the
interactions of DNA molecules with Lac repressor proteins. They per-
formed TPM measurements to extract the distribution and changes in
the apparent length of tethered DNA in function of the operators. Due to
the symmetry of the two identical dimeric arms of the Lac repressor,
different operators can bind to each arm with different possible or-
ientations, yielding distinct loop types, either parallel or anti-parallel.

Monte Carlo simulations were performed [55], where the DNA
molecule was modeled as a necklace of rigid beads separated by rigid
cylinders, which takes into account the fluctuations of the Lac re-
pressor-mediated DNA looped segment. Then, the looping probabilities
for a specific DNA loop configuration were calculated from the simu-
lations. This information gave access to the probability of a loop of a
particular length and a given topology. Comparing computational re-
sults to TPM experimental results enabled the authors to identify the
looped state topology. In addition, simulations were also used to esti-
mate the dissociation constants associated with the binding of the Lac
repressor to each of the operators. This numerical study [55] suggests
different looping probabilities for anti-parallel and parallel loop types
formed along a 1632 bp-long DNA molecule, to which a particle of
radius 160 nm is attached. The looping probabilities for the anti-par-
allel loop between binding site centers located at base-pairs 444 and
1044 (resp. 1344) are 4-fold (resp. 6-fold) higher than those for the
parallel loop. It also suggests that the anti-parallel loop is entropically
favored.

4.3.3. Effects of salt on elastic properties
The amplitude of movement not only depends on the physical

properties of the DNA-particle system, but also on the physicochemical
properties of the surrounding solution.

The stiffness properties of nucleic acids molecules depend on the

solution ionic strength, defined as =I z ci i i
1
2

2 where zi and ci are re-
spectively the valency and the concentration of ion i, that induces
screening of the electrostatic repulsion between the negatively charged
phosphate groups along the sugar-phosphate backbones. Single-mole-
cule techniques permit to characterize changes of the polyelectrolyte
mechanical properties induced by changes in ionic strength as pio-
neered by Lambert et al. [56]. Studies based on high-throughput TPM
investigated the dependence of the persistence length on salt con-
centration for monovalent ( +Li , +Na , +K ) and divalent ( +Mg2 , +Ca2 )
metallic valent ions [19,57]. In the first study [19], after correcting the
blurring effect using Eq. (4), the end-to-end distance of the tethered
1201 and 2060 bp-long dsDNA was observed to decrease as a function
of the ionic strength I (ranging from 10 mM to 3 M), as expected. A TPM
coarse-grained model, taking into account excluded volume interac-
tions, was used to extract p from measurements by resolving the in-
verse problem (described in Section 4.2). It was observed that p varies
from 30 to 55 nm over the large range of ionic conditions, comparable
to previous experimental results.

Two main models were used to fit the data: the Odijk-Skolnick-
Fixman model valid at large I, relying on a mean field approach valid at
low values of the electrostatic potential [58,59]; the Odijk-Skolnick-
Fixman-Manning model where the above approach was corrected at
low I accounting for the Manning condensation of a few counterions
that decreases the effective charge along the DNA [60]. These models
could not account quantitatively for the whole experimental data set
obtained with +Na or +Mg2 . The more recent Manning model [61] with
internal electrostatic stretching force due to the repulsion of the charges
along the polyelectrolyte well fitted the entire range of I for the +Na
case only.

The second experimental study [57] refined the physical under-
standing of the phenomenon by exploring the role played by ion size
and a larger range of I (from 0.5 mM to 6 M). The experimental protocol
was also improved because pH was observed to decrease significantly in
phosphate buffer when ions were added. A 4-(2-hydroxyethyl)-1-pi-
perazineethanesulfonic acid (HEPES) buffer was used instead and a
slower decrease of the apparent length of the dNA molecule was now
observed as comparer to the previous study. Then, the extracted per-
sistence length of the DNA could be quantitatively described by more
sophisticated theoretical approaches, the Netz-Orland [62,19] for di-
valent ions and Shen-Trizac [63] for monovalent ones. These theories,
by including non-linear electrostatic effects and the finite DNA radius,
can account for the observed behavior of p over the whole I range.
Interestingly, the metallic ion size does not influence the persistence
length in contrast to alkyl ammonium monovalent ions at high I[57].

A recent work also probed the salt dependence of the torsional
stiffness of DNA by multiplexed MTT [64]. Few different +Na mono-
valent concentrations, 20, 100 and 500 mM, and a combination of
100 mM of +Na and 10 mM of +Mg2 were tested. The extension-rotation
and torque-rotation curves were collected. The effective torsional
stiffness, Ceff , was determined by fitting the linear torque-rotation re-
gime for each of the ionic strength conditions over various stretching
forces. At high stretching forces ( >f 6 pN), when stretching forces
suppress bending along the DNA, the intrinsic torsional stiffness is in-
dependent of salt concentration. However, at small stretching forces,
Ceff increases when the ionic strength increases. Coupling MTT mea-
surement and simulation of the twistable worm-like chain model, per-
mits to examine in more detail the torsional persistence length of the
DNA molecule [65]. The discrepancy between experimental and nu-
merical measurements underlay that bending and twisting are in-
trinsically coupled in DNA molecule because of the difference between
the major and minor groves. The bending elasticity is not isotropic
anymore. This effect can be implemented in the alternative twistable
worm-like chain elastic model proposed by Marko and Siggia [15],
where twist-bend coupling is fully taken into account. The systematic
deviations of the twist response of dsDNA investigated by magnetic
tweezers experiments with the numerical model reported in previous
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studies could be explained by taking into account this direct coupling
between twist and bend deformations.

4.3.4. Effects of temperature–DNA denaturation
Due to base-pairing and stacking energies on the order of the

thermal energy k TB , DNA flexibility is strongly dependent not only on
the ionic strength, but also on the temperature T. It affects the cohesive
interactions between the DNA bases as well as the contribution of the
chain configurational entropy in the free energy [66]. From a biological
perspective, various species live in extreme environments and are
subjected either to high temperatures or to large temperature fluctua-
tions. This emphasizes the importance of knowing how DNA structure,
properties and protein-DNA interactions are affected by temperature.
To this purpose temperature-controlled TPM studies were performed
during the last decade [45,22]. This technique allowed one to explore
the temperature-dependence of the apparent DNA persistence length p.

In the measured temperature ranges, from 23 to 52 °C in Ref. [45]
and from 15 to 75 °C in Ref. [22], a correlation between the increase of
T and the decrease of the apparent end-to-end distance of the DNA
molecule was revealed. Driessen et al. [45] used a numerical procedure,
by solving the Langevin equation, Eq. (8), to model the Brownian
motion of the tethered particle. The simulated results in function of the
DNA persistence length were fitted with a quadratic function in order to
extract the relation between p and the amplitude of movement . This
empirical equation was used to extrapolate the persistence length from
the values of measured in TPM experiments. As expected, p is slightly
dependent on the AT/GC base-pair composition of the DNA. More
surprisingly, this study revealed that the intrinsic flexibility of dsDNA
strongly and linearly depends on temperature in a range well below the
DNA melting temperature, an effect much stronger than expected.

Brunet et al. [22] investigated further the same question by cou-
pling htTPM experiments and Monte Carlo simulations (Section 4.2).
The extracted values of p showed a slower decrease of the amplitude of
movement as compared to the previous study. Considering the changes
in buffer viscosity with T, the authors put forward that the detector
time-averaging blurring effect (Section 3.3) needed to be cautiously
corrected. The observed decrease of the apparent end-to-end distance of
the tethered DNA well below the DNA melting temperature is mainly
due to this effect. After carefully correcting the TPM measurements
from Ref. [45], the variation of = T k T( )/( )p B with T is sharper, in
much better agreement with the expected dependency of the bending
modulus with the temperature at physiological salt conditions. Up to
60 °C, the extracted values of p display a temperature dependency that
can be associated with an intact dsDNA molecule, without a significant
fraction of denaturated base-pairs.

Additional work focussed on the temperature dependence of the
response of DNA to torsion [67]. This study combined single-molecule
magnetic tweezers measurements with all-atom molecular dynamics
and coarse-grained simulations. DNA extension-rotation curves were
measured over a temperature range of 24 to 42 °C. Increasing tem-
perature systematically shifted the extension-rotation curves to a ne-
gative number of turns. In other words, the point where the DNA mo-
lecule is torsionally relaxed changes linearly with temperature.
Measurements show that the temperature-dependent helical change is
not force-dependent for stretching forces <1 pN (the overall extension-
rotation response of DNA is symmetric around zero turn at low force,
see below). Averaging over small forces gives the DNA helical twist
constant = ±TTw( ) ( 11.0 1.2)°/(°C.kbp), in agreement with anterior
studies. Using the oxDNA coarse-grained model, describing DNA as two
inter-twined strings of rigid nucleotides, a 600 bp-long DNA molecule is
simulated including Debye-Hückel screened electrostatic interactions,
at =I 150 mM to match experimental conditions. Simulated tempera-
tures ranged from 27 to 67 °C. The mean twist angle for zero torque
decreased as when the temperature was raised. Linear fit over tem-
perature yielded the slope = ±TTw( ) ( 6.4 0.2)°/(°C.kbp), smaller
than the experimental value. Additionally, this question was addressed

in all-atom simulations of a 33 bp mixed DNA sequence with explicit
water molecules and ions at five different temperatures ranging from 7
to 47 °C. The twist angle linearly decreases in the range, DNA-twist
changes are equal to = ±TTw( ) ( 11.1 0.3)°/(°C.kbp), in close
agreement with experimental values. The discrepancy in coarse-grained
simulations suggests an important role of structural local changes along
the DNA molecule, only taken into account in the all-atom simulation.
Coupling experimental results with theoretical predictions, this work
suggested that the temperature-dependent change in twist is pre-
dominantly due to partial and local loss of hydrogen bonds over the
DNA backbone that is not correctly considered in coarse-grained
models.

DNA structure modifications can be attained not only through
temperature changes as discussed above, but also by applying torque
and/or force with tweezers. At low longitudinally applied forces ( <f 1
pN), both strong over- and under-twisting lead to the formation of
plectonemic supercoils. At higher forces, plectonemic supercoils are
formed under positive torque, but the two DNA single strands separate
locally (denaturation bubbles) when a sufficient negative twist is ap-
plied [26]. The consequence of a force applied longitudinally without
any external torque is more subtle. Analytical models are essential tools
to determine the nature of the DNA overstretched state observed for f
above 60–70 pN. Since its initial discovery in 1996 [68,11] a debate
has arisen as to whether this overstretched state is a new S-DNA form or
more simply a denaturated state, i.e. a large denaturation bubble if the
two ends are closed or peeled ssDNA if one end is open [69]. New ex-
periments have then been done to probe (i) the impact of the experi-
mental conditions of attachement on the coverslip and the bead [69],
(ii) the effect of the NaCl salt concentration [70,71], and (iii) the in-
fluence the base content [72,73], on the overstretched states. It has
been clearly shown (see for instance Refs. [27,69]) that the knowledge
of the different formulas that fit these three possible states are central in
the interpretation of data. Although fitting the transitions itself needs
complicated theories such as the one presented in Appendix A leading
to the fit shown in Fig. 3, simpler formulas such as Eq. (A.1) with fewer
fitting parameters (the DNA length L, its persistence length p) or Eq.
(A.2) for ssDNA stretching allows one to undoubtedly recognize the
overstretched state.

This issue is an example where analytical approaches cannot be
replaced by numerical simulations since a good numerical model would
necessitate both the structural details of the double helix and a dsDNA
length L between 0.2 and µ4 m (i.e. 600 to 10000 bp). An attempt has
been done using the oxDNA code [76] for a 100 bp dsDNA but the S-
DNA state has not been observed.

5. Dynamically detecting two (or more) distinct states

Detecting dynamical configurational changes of DNA molecules is
challenging in many situations of interest in genetic regulation. As al-
ready stressed in Section 4.3.2, protein-induced DNA looping is a para-
digmatic mechanism that has drawn much attention during the last
25 years [25], because single-molecule techniques have enabled various
research groups to shed light not only on looping thermodynamics of
different molecular systems but also on their kinetics. As TPM minimizes
mechanical constraints on DNA and proteins, it can give access to ki-
netics at the molecular scale, with high time-resolution. In 1995, lactose
repressor-mediated loop formation and disassembly were kinetically
monitored for the first time [3]. In this case, the total DNA molecule was

=L 1150 bps long, the polystyrene particle radius was =R 115 nm, the
two DNA sites that are bound when the loop is formed were s 300 bps
away, and the repressor concentration was 1 nM. The looping and dis-
assembly lifetimes were found to be very long and both on the order of
100 s. These values were later refined [77]. Systematic exploration of the
effect of the distance s on looping time was performed in Ref. [8]. In
2006, the IS911 transpososome assembly was analyzed by following a
similar strategy [53]. During the last decade, the bridging activity of site-
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specific recombinases could also be studied by TPM or TFM by em-
ploying a construct where the synapse assembly also reduces the ap-
parent length of the DNA molecule by forming a loop [6,78,7,21,5].
Further addition of sodium dodecyl sulfate (SDS) allows one to assess
whether strand exchanged occurred or not within the synapse.

Other two-state system kinetics have also been thoroughly studied
by TPM. When protein binding provokes a DNA bend, it is detected as
an effective shortening [53,54,78,5]. Nucleosome assembly in eu-
karyotes also leads to a shorter apparent length [79]. Furthermore, TPM
can be used to probe the kinetics of (single) secondary bonds, which
can, e.g., transiently form between the particle and the substrate [80].

TPM is well adapted to follow dynamics of two-state systems when
the dwell-times in both states are on the same order of magnitude, in
other words when their free energies are comparable. In this section, we
explain how recent theoretical developments likely improve the in-
direct measurement accuracy of the transition rates between the two (or
more) states with TPM.

5.1. Thresholding and correlation time

We illustrate the concept of thresholding [81,82,17] (Fig. 4) in the
case of DNA looping between two specific operators and mediated by
DNA-binding proteins [3,77,53,41,8]. The average dwell-times in the
unlooped and looped states are respectively denoted by LF and LB. By
definition, the transition rates between these two states are LF

1 and LB
1.

These quantities depend on the binding energy of the DNA–protein
complex, on the protein concentration, and on the DNA elastic prop-
erties [77]. We assume that the slowly diffusing bead does not sig-
nificantly alter looping kinetics if it is sufficiently small, as discussed in
Ref. [17] and in Section 4.1.

The most basic idea is to start from the fact that the amplitude of
movement of the tethered particle is smaller in the looped state.
Hence the plot of (or the variance 2) in function of time will display
an alternance of time intervals where is small and large, as displayed
in Fig. 4. On must define a threshold, denoted here by c, below which
the molecule is considered to be looped, and above which it is un-
looped. The value of c can be set by examining the bimodal distribu-
tion of amplitudes of movement [77,53]. One can for example set it at
half-amplitude between the two maxima of the bimodal distribution.
Since r2 2 , the average … must be estimated on a (sliding) time-
window, the duration of which, also called the averaging time, is de-
noted here by Tav. From a signal-processing perspective, this averaging
scheme corresponds to window-filtering, i.e. convolution of tr ( )2 with a
window function. One might choose to switch to more elaborate ex-
ponential or Gaussian filters [77,83,84], without gaining a significant
advantage, however.

One of the main difficulties comes from the fact that the probability
distributions of for the looped and unlooped states can overlap sub-
stantially when using a too short averaging time Tav[85], as illustrated in

Fig. 4. However, only events occurring at a time-scale larger than Tav can
be detected. Efficient thresholding thus relies on a compromise between
a large value of Tav needed to estimate at best the amplitude of movement
(and avoid at best false detections), and a short value needed to get the
best time resolution (and minimize missed transition events) [83,17]. In
particular, the measured values of the rate constants can depend sig-
nificantly on the window size [85] because the rate is the inverse of the
average dwell-time in a state, and measured dwell-times are bounded
below by the window size. Consequently, the Tav must be chosen con-
sistently with the dwell-times, typically <T ,av LF LB, even though some
improvements can substantially correct for missed events [83].

A lower bound on Tav comes from the correlation time introduced
in Section 3.3, as discussed in Ref. [17]. Let us assume for simplicity
that the two states have comparable correlation times . Their ampli-
tudes of movement are <1 2. We introduce the parameter

= 1 ( / )1 2
2. It was demonstrated [17] that the minimal averaging

time Tav needed to resolve them with good accuracy (i.e. with few false
detections of transitions) is typically equal to / 2. All in all, optimal Tav
must satisfy

< <T , .2 av LF LB (10)
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Fig. 3. (a) Force-extension curve for a ssDNA. Data
(symbols) are taken from Hügel et al. [74]. The black
solid curve corresponds to a fit using the discrete
worm like chain interpolation with the non-linear
bond elasticity, Eq. (A.2) (the red one corresponds to
discrete version of the Marko Siggia interpolation,
Eq. (A.1)). The parameters values are: =L 3.40 µm,

= =a1.5, 0.20 nm. (b) Force-extension curve for a
poly(dG-dC) dsDNA. Data (blue symbols) are taken
from Rief et al. [75]. Solid curves correspond to the
discrete worm-like chain interpolation for B-DNA
(red), S-DNA (green) and with non-linear ex-
tensibility for ssDNA (pink). The black curve corre-

sponds to Eq. (A.3), where linear stretching is included as shown by the blue curve for pure B-DNA. The red symbols correspond to the semi-analytical calculation
using transfer matrix. Parameters values are: =L 0.14;µmB , = = = = =E147, 1.89, 3.8, 1200B S BS B pN. Inset: Fraction of base-pairs S in the S state vs. force,
and Ising correlation function +1 i i 1 (dashed curve). Taken from Ref. [27]. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 4. Thresholding: The plots of the variance 2 (in nm2) versus time for a
simulated TPM experiment of a DNA molecule of length =L 798 bp, a particle
of radius =R 20 nm and three averaging times =T 3av (yellow), 30 (red) and
300 ms (black). The vertical lines indicate the transition events (looping or
unlooping) that are forced in the simulation [17]. The horizontal solid lines
show the average values of 2 in the looped (bottom) and unlooped (top) states.
The dashed horizontal line shows the threshold value c separating these two
states for detection purposes. Detecting close-lying transitions, as in the right
part of the figure, is the most critical issue of thresholding together with de-
tection of false transition events (see text). Taken from Ref. [17]. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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5.2. Hidden Markov chains

Hidden Markov modeling (HMM) combined with a maximum-like-
lihood approach can be used to determine the numerical values of
model parameters such as the transition rates. In contrast to thresh-
olding, no windowing is required, nor the prior selection of a threshold.
HMM, initially developed by mathematicians [86], has nowadays
plenty of applications in various fields of science. It has been adapted to
TPM in 2007 by Beausang et al. [85,87]. The underlying idea is that the
system under consideration can be modeled by a Markov chain [88],
the states of which are not directly observed in the experiment, i.e.,
they are “hidden”.

Here we again illustrate these ideas in the case of DNA looping, even
though it can be generalized, e.g., to protein-binding. The hidden state,
denoted by q t( ), can be “looped” or “unlooped” DNA. We again look for
the average dwell-times LF and LB. The most basic idea [85] would be
to consider that this two-state system is governed by a two-state Markov
chain with a ×2 2 transition matrix [88]. However, this naive approach
fails because it ignores the fact that transition rates between both states
depend on the polymer conformation: for example, looping is forbidden
when the polymer is too stretched. As a consequence, the Markov chain
must also take into account the chain configuration, for example
through the 2D position of the particle, r , itself governed by an over-
damped Langevin equation in a harmonic potential. The system state as
it appears in the Markov chain is now q t tr( ( ), ( )).

Once an experimental time series q t tr( ( ), ( ))t has been recorder, the
idea is then to calculate the likelihood that it is observed for a given
pair of dwell-times ( , )LF LB . This can be done with the standard tools of
probability theory. Then the dwell-time values maximizing this like-
lihood are considered to be the most probable ones. This procedure has
been tested on numerically generated trajectories for which the dwell
times were exactly known. It was able to correctly recover these values,
up to statistical error bars.

However, in spite of its conceptual simplicity, the practical im-
plementation of the method relies on some strong approximations
about the looping process, as stated by the authors themselves [85]. For
example, looping is allowed if and only if the particle excursion tr ( )
is smaller than a threshold max. This is modeled by a crude step-
function in the Markov chain. In addition, a simplification is “to ignore
the unobserved height variable z [above the glass substrate plane], in
effect treating the bead motion as diffusion in two dimensions.” This is
again an issue when deciding whether looping is possible or not for a
given value of tr ( ) because z can be large even though tr ( ) is small.
“A better analysis might treat z as another hidden (unobserved) vari-
able.” Finally, as in the thresholding approach, the polymer is con-
sidered to be in quasi-equilibrium in both the looped and unlooped
state, from which transition probabilities are inferred. This assumption
is only valid if the free-energy wells around each state are sufficiently
deep.

A refinement of the HMM method relies on variational Bayesian
inference, first used in the study of Lac repressor-mediated looping [41]
that we have already mentioned in Section 4.3.2. Bayesian inference is
able to determine not only the most likely model parameters but also
the most likely number of hidden states, that was fixed a priori in the
above HMM method, by observing the number of peaks in the prob-
ability distribution of . The improved ability of this method to resolve
close-lying transitions (see Fig. 4) has also been tested in this work. For
instance, two states separated by an amplitude of movement of 40 nm
could be resolved by their technique at a mean lifetime of about 0.5 s. In
contrast, lifetimes of more than 4 s were necessary for states to be re-
solvable by simple thresholding. The reason for this difference is that
Bayesian inference does not require time-filtering as evoked above.

When the free energies of the states are significantly different, one
state is favoured with respect to the other. For example, let us assume
that once the loop is formed, it is very stable because breaking it would
require a free energy F k T . Then loop opening events become rare

and cannot be observed in practice. It becomes interesting to apply a
force f (with the help of tweezers) in the pN range on the tethered
particle because the associated potential energy difference between
both states can compensate F and make them roughly equiprobable,
thus allowing one to observe more frequent opening events. Indeed, the
dwell-times are known to depend exponentially on the applied force
[89].

Beyond looping, this approach has been successfully used in com-
bination with HMM analysis to study single-nucleosome unwrapping
[90]. Since DNA is wrapped in about two turns around a histone oc-
tamer, three distinct conformations can be observed: fully wrapped,
about one turn unwrapped and fully unwrapped. Applying a 2.5 pN
force allows one to observe transitions between the two first states, and
at a stretching force of 6 pN, the second turn unwraps. Detailed in-
formation about nucleosome unwrapping such as bending angles of
nucleosomal DNA or dwell-times could be extracted from these ex-
periments. Zero-force dwell-times can then be extrapolated from these
measurements. This method can in principle be used to detect any
transient DNA–protein complex formation and dwell-times. Similar
approaches have been used to study DNA hairpins opening/closure [91]
and DNA G-quadruplex unfolding/refolding [92].

6. Conclusion

This Review has illustrated in many situations the powerful cap-
abilities of TPM experiments coupled to theoretical and/or numerical
modeling to give access to quantities of interest in both biological and
biophysical contexts. We have identified two levels of difficulties that
must be overcome in order to infer the physical parameters of interest
with a good accuracy.

First, raw data must be carefully processed thanks to well-estab-
lished protocols in order to deal with both statistical and systematic
sources of errors. The existence of outliers seems inherent to single
molecule experiments because it is both difficult to prepare samples
with 100% of identical molecules and to graft all molecules in ideal
conditions limiting unwanted non-specific interactions. This is in part
solved thanks to nano-lithography techniques, but not entirely. After
having discarded outliers, the most critical systematic effect to deal
with is the blurring effect inherent to the finiteness of the detector
exposure. We have proposed an efficient way to solve this issue through
simple inversion formulae, as summarized in Eqs. (4) and (5).

Once the data have been corrected from these sources of error,
solving the inverse problem enables one to infer the DNA state or the
physical parameters of interest. This concerns not only quantities
measured at thermodynamic equilibrium (e.g., elastic parameters C and

p or intrinsic bending angles), but also out-of-equilibrium properties of
great biological interest such as transition rates (e.g. binding/unbinding
or looping/unlooping rates). In the latter case, we have shown that
hidden Markov chain approaches are promising even though they are
more complex to implement than simple thresholding. In all cases, the
underlying quantitative model must rely on solid physical grounds,
appealing to polymer and elasticity theory, and out-of-equilibrium
statistical mechanics. We have listed several successes of such ap-
proaches in this Review.

However, to our point of view, few issues remain to be solved in the
future in order to provide a fully operational tool to biophysicists and
biologists. We have explained that intrinsic curvature modifies the
amplitude of movement in a way that can be quantified with good
accuracy. However, weak intrinsic curvature is spread all over the
molecule, and it is not only localized at specific high-curvature loci.
This “quenched” disorder likely modifies the amplitude of movement in
a systematic but ill-controlled manner. This phenomenon should be
quantified, for example by using more sophisticated mesoscopic models
fully taking account such subtle effects [93].

When a region of DNA is modified or affected in any way, for ex-
ample through binding of a protein, it can bear not only a different
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spontaneous curvature that one wants to quantify, but also a different
bending modulus. In particular, DNA flexibility is a sequence-depen-
dent quantity [94]. Disentangling sequence-dependent spontaneous
curvature and sequence-dependent elastic properties in single-molecule
experiments is another issue that will require extensive modeling work
in the future.

As far as dynamical properties are concerned, we have just stressed
that methods relying on hidden Markov chains are quite promising.
However, to our knowledge, no systematic quantification of their cap-
abilities, in the spirit of Eq. (10), has been performed so far. Probability
theory together with numerical modeling should be able to give

definitive and robust conclusions on the strengths and limits of these
approaches. Filling this gap seems important to us in order to even-
tually provide an easy-to-use tool to experimentalists.
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Appendix A. Analytical modeling of stretching experiments

The classical model for semi-flexible polymer stretching has been developed by Marko and Siggia [95] using the continuous worm-like chain
model by developing a formula that interpolates between the exact results in the limits of low ( f k T/ 0.08B p pN) and strong forces
( f k T/B p):

= +f k T z
L z L

1
4

1
4(1 / )

.B

p
2 (A.1)

This formula has been successfully used to fit the force-extension curves for f 65 pN for a -phage dsDNA (see the review [96] and references
therein). One technical difficulty in fitting these curves is to set the origin. This might be correlated to the fact that experimentally the tethers are not
stretched exactly in the direction perpendicular to the coverslip [97].

For larger forces, the DNA internal structure starts to come into play (see below). However this type of approach remains valid for very high
stretching of ssDNA [75] provided that both the discrete nature of the chain is taken into account [98] and non-linear stretching terms are included
[74]. Fits of force-extension curves of ssDNA up to 1200 pN, as shown in Fig. 3a, have been nicely fitted using the modified formula that includes
both terms [27]:
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where = k T/( )B is the bending modulus in units of ×k T 4 10B
21 J (at room temperature), =u ( ) coth( ) 1/ , and

= +U f f f f( ) 1.172777 3.731836 4.118249nl
2 3 (where f is in units of 10 nN) [74]. The fit leads to the bending modulus value = k T(ssDNA) 1.5 B

and an effective monomer length =a 0.20nm (see Fig. 3a). Unexpectedly this value of a is much smaller than the distance between two consecutive
bases in ssDNA a 0.7ss nm. This result suggests that the number of degrees of freedom increases by a factor 3.5 for strong forces [27], a result that
has already been observed for peptides [99].

When strong forces are applied to dsDNA, experiments show a sharp, few picoNewtons wide, cooperative overstretching ’transition’ at a given
’critical’ force of around 60–80 pN, accompanied by a sudden 70% increase of the contour length [68,11]. It corresponds to a transition from the B-
form to a new form of unstacked DNA remaining in a duplex form (S-DNA form for Stretched). A second transition is observed at stronger forces [75]
consistent with a peeling of one strand from the other strand. The critical force and therefore the selection between these two transitions depends on
the DNA sequence and the salt concentration [100,72,70]. Using a Ising-Heisenberg coupled model [101–103], an analytical formula has been
derived [27] which allows us to fit the first transition:
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where B and S refer to the DNA state, =F a f k T/( ),B B BS is the bending modulus at the BS domain wall, = =a a E a E k T/ , /( )S B B B B B where EB is the
stretching modulus, = +F F( /4)B B

2 1/2 and = +F F[ ( ) /4]S S
2 1/2. The fraction of base-pairs in the B (respectively S) state are B (respectively

= 1S B). Finally +i i 1 is the two-point correlation function of the effective Ising model which is non-zero only close to the transition [27]. An
example of a fit of the force-extension curve for a poly(dG-dC) DNA is shown in Fig. 3b. The inset shows the variation of the fraction of base pairs in
the S state and the Ising correlation function as a function of the applied force. Eq. (A.3) has also been used to fit the S-DNA to ssDNA transition for
poly(dG-dC) where the linear stretching term is replaced by the non-linear stretching one for ssDNA [27].
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